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The paper is concerned with the problem of the linear stability of an arbitrary 
inviscid zonal flow on a p-plane. Based on the analysis of integral relations following 
from the linear boundary-value problem, new evaluations, considerably more exact 
than the previously known ones, of the parameter region of unstable disturbances are 
derived. Some new relations among these bounds are established. 

1. Introduction 
The barotropic-baroclinic instability of large-scale zonal flows is the classical 

problem of geophysical hydrodynamics. The problem of examining the perturbation 
evolution of a certain prescribed, initial state and finding the bounds on the 
parameters of perturbations growing with time, is hardly tractable analytically for 
real flows with an arbitrary dependence on the meridional and vertical coordinates 
even within the linear theory. Until now only an asymptotic analysis of some 
particular situations has been carried out by Killworth (1980). This approach yields 
a physical understanding of the main mechanisms of instability, but gives no hope 
of describing linear instability over a wide range of basic parameters. A unique 
strongly idealized model proposed by Charney (1947) only allows us to carry out a 
sufficiently complete analysis of the linear boundary - value problem for the case of 
baroclinic instability. Moreover, even direct numerical analysis of the boundary- 
value problem in the general barotropic-baroclinic case is rather difficult ; only the 
simplest two-/three-layer models have as yet been studied (Killworth 1980). Thus, 
the possibility of formulating a priori evaluations (instead of direct numerical 
treatment of the boundary-value problem, or in combination with it at a 
‘ precomputing ’ stage) is of special interest. 

The approach based on the analysis of integral relations for normal modes, which 
was initiated by Rayleigh (1880), has a long and rich tradition in hydrodynamics. 
But in the study of flow stability on a beta-plane the main achievements in this 
direction can be easily listed. They are connected with two works: Pedlosky (1964) 
and Miles (1964). Pedlosky (1964) derived an extension of Howard’s (1961) semicircle 
theorem (proved for parallel stratified unrotating shear flows) for unstable modes of 
the barotropie-baroclinic instability problem. Pedlosky’s semicircle theorem gives a 
bound on the phase velocity c of unstable disturbances in terms of the extreme values 
of the flow velocity. Pedlosky (1964) also constructed an independent growth-rate 
bound in terms of the maximum flow gradients. I n  work concerned with the problem 
of baroclinic instability, within Charney’s (1947) model, Miles (1964) proved another 
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semicircle theorem (here and henceforth we mean Theorem I11 of his work), also in 
terms of the extreme velocity values. 

In our work, which follows a similar path, new bounds on the phase speed and the 
growth rate of unstable disturbances, as well as their interrelations, are derived. 
Some elements of a technique similar to that applied in recent works on the stability 
of stratified (TaylorGoldstein) shear flows (Kochar & Jain 1979; Makov & 
Stepanyants 1984) have also been used. 

The paper is organized as follows : first, in 92 we state the problem, review the main 
points of the key works (Pedlosky 1964; Miles 1964), and improve Pedlosky’s 
semicircle theorem by extending Miles’ theorem for the general case considered here 
(i.e. for barotropic-baroclinic instability of an arbitrary zonal flow). In $ 3  we prove 
a new inequality relating two functionals, which allows us to construct some effective 
bounds on the phase speed. Their general feature is that the domain of allowed speed 
sharply diminishes as p increases and tends to zero as non-dimensional p tends to 
infinity. Then in $4  some refinements of Miles’ semicircle theorem based on the 
simultaneous use of Miles’ results, our results of the previous section, and Pedlosky’s 
semicircle theorem are derived. Section 5 deals with the relations between the 
different kinds of bounds. New relations are established as well as new bounds that 
result from these relations. In the conclusion, the main points are summarized and 
discussed. 

2. The statement of the problem. Extension of Miles’ theorem 
2.1. Statement of the problem 

Let us consider the problem of linear stability of inviscid baroclinic zonal flows in a 
channel on a P-plane. We shall follow exactly the original formulation of the problem 
by Pedlosky (1964), and preserve all the notation (Pedlosky 1979), where the 
underlying physical concepts for this class of problems are thoroughly discussed. We 
study propagation of wave-like disturbances of the form 

(4% 2, x, t )  = $(y, 4 exp [ik@ - ct)I, 
where 4 denotes any disturbance field characteristics, k is the zonal wavenumber, 
and c(c = c,+ic,) is the phase speed of the corresponding Fourier component. Axes 
x, y, z are oriented as follows: x is directed eastward, y northward, z vertically 
upward. The boundary-value problem in terms of N(y, z ,  k, c) (the amplitude of 
northward displacement) with standard inviscid boundary conditions on the rigid 
lower boundary ( z  = ~(y)), on the channel sidewalls (y = f 1) ,  and on the upper free 
surface ( z  = zT) has the well-known form 

N = O ,  y = & l ,  (2.2) 
(U-C)2aZN+(U-c)SNa,~ = 0, z = 0, (2.3) 

a , N =  0, z = ZT. (2.4) 
All the variables are non-dimensionalized by introducing characteristic scales of flow 
velocity (U“), horizontal (L)  and vertical ( H )  flow variability. The non-dimensional 
stratification parameter S is composed of a Brunt-Viiisiila frequency n and the 
Coriolis parameter fo at a certain fixed latitude yo 

s = 922H”fi L2, 
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where 

and ps is a 'standard' density vertical distribution. Parameter /3 is the non- 
dimensional northward gradient of the Coriolis parameter at  the same latitude yo 

/3=/3,,L2/U0, where p ,==f l  . 
ay Y-Yo 

The problem is to get a priori constraints on the complex phase speed c for unstable 
perturbations. 

2.2. The work of Pedlosky (1964) 
Before proceeding with our analysis of the boundary-value problem (2.1)-(24), we 
should recall the main points of the work by Pedlosky (1964). For the unstable 
modes, i.e. with ci + 0, there are two integral relations which are immediate 
consequences of (2.1)-(2.4): 

where 

P = ps(s-lla,2v12+ la,ivp+ k 2 1 ~ 1 2 ) ) .  

The integral relations (2.5), (2.6) are written here for the sake of generality to take 
account of bottom topography. We shall, however, confine ourselves to consideration 
of flows over a flat bottom (i.e. aY7 = 0). These relations (with the late terms omitted) 
form the basis for all the subsequent analysis in Pedlosky (1964), Miles (1964) and in 
our treatment of the problem. 

In Pedlosky (1964) the key tool is the inequality 

(P> 3 ( k 2 + i + )  o'), (2.7) 

which relates specifically averaged values'P and j and gives an evaluation from below 
of ( P )  in terms of 0'). Rewriting (2.5) in the form 

and applying the inequality (2.7), one can easily find that 

where Urnax, Urnin are the maximum and the minimum values of U in the meridional 
plane. 

Some manipulations with the evident inequality 
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t 

c, 

FIGURE 1. Miles' and Pedlosky's bounds on the complex phase speed c of unstable disturbances. 
The sketch illustrates the situation when B > BYp and Miles' semicircle (2.20) (the thick line) lies 
within Pedlosky's bounds (2.9), (2.12) (the thin lines). Howard's semicircle is shown for scale (the 
dashed line). 

The last term in (2.11) is evaluated straightforwardly via replacement of U by Urnin. 
Finally, on dividing (2.11) by the positive integral (P), we get from (2.11) 

[Cr-)( umax + Umin)12 + C; < R;, 
, (2.12) 

Thus, the complex phase speed c of unstable disturbances lies within a semicircle in 
the c-plane, with radius Rp and with its centre on the real axis a t  the mean velocity 
(see figure 1). The portion of the semicircle for which cr > Urn,, is prohibited for the 
eigenvalues c by the inequality (2.9). We note that the bounds on c, given by the 
inequalities (2.9), (2.12) depend only on the two basic state parameters, namely on 
the maximum and the minimum values of the flow velocity attained by U in the 
meridional plane. These bounds also depend implicitly on the flow location (Rp 
depends on /3 and therefore on latitude); it  also should be pointed out that the 
semicircle expands up to infinity when P increases. 

An alternative evaluation in terms of other flow characteristics has been derived 
by Pedlosky (1964) from the boundary-value problem (2.1)-(2.4), rewritten in terms 
of a new variable x 

X ( Y ,  z )  = "y, w 4 Y >  2 )  - 4;. (2.13) 

From this form of the boundary-value problem there immediately follows an integral 
relation 

which, in combination with an inequality similar to (2.7), yields the upper bound 
denoted as C ,  for the disturbance growth rate in terms of a certain combination 
(denoted as q) of flow gradients 

ci" < &(k2+$tZ) = cp; q = [S-'(q)2+(Uy)2]msx (2.15) 
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where the subscript max denotes the maximum value of the terms in the square 
bracket attained over the meridional plane. 

2.3. The extension of Miles (1964) 
Another semicircle theorem was proved by Miles (1964) (recall that we mean only 
theorem I11 of his work) in a paper concerned with the problem of zonal flow 
baroclinic instability within Charney’s (1947) model. It was shown that, within this 
model Miles’ theorem is stronger than that of Pedlosky. 

We now extend this theorem to the general case and investigate its relation with 
Pedlosky’s theorem, which is not as simple in the case of baroclinic instability. This 
extension can be made in a very straightforward manner ; it is enough to point out 
that both Miles’ theorem itself, and its proof hold true for the general problem of 
barotropic-baroclinic instability of an arbitrary zonal flow as well. For the sake of 
the further analysis, however, it  is convenient to present the proof in detail. 

Miles starts with the most general integral relation of a type similar to (2.10): 

(P) { [cr -g (c ,+c2) ]~+c~-~(c2 -c l )~}  

= ( ~ ( ~ - c l ) ( U - C 2 ) ) + P O ” t ( C 1 + C z ) - U l > ,  (2.16) 

where cl, c2 are arbitrary real parameters and c2 > cl. The main idea is to select 
certain c,, c2 such that the right-hand side of (2.16) is negative, then the phase speed 
lies within a semicircle (for ci > 0) based on the real axis diameter (cl, c2). On 
representing the right-hand side of (2.16) in the form 

(&(U-C,)(U-C,)) + k2o’(U-c+)(U-c-)), (2.17) 

where c* = ;(c1+c2)+8[4(c2-C1)]2+ qp; 
up = P / k 2 ;  c? = p~(~ -11~z12+ I~y12) ,  (2.18) 

Miles (1964) showed that the choice of constants 

(2.19) 

provides the negativity of the right-hand side of (2.16) and thus yields the family of 
semicircles 

with the minimum value of the semicircle radius R, given as 

~1 = Urnin-;%+ (;u,)2(Umax-Umin+tUP)-1’ 1 
c2 = Umax J 

(cr-+(C1-c2))’ +c: < [;(c2-c1)I2, (2.20) 

(2.21) 

It should be noted that R, increases monotonically with p from Howard’s radius 
value equal to ;(Urn,,- Urnin) when p+O, to twice this value as p+m. Miles noted 
that these semicircles always lie within those of Pedlosky (figure l ) ,  but this holds 
true only for the case of baroclinic instability. In the general situation an intersection 
of Miles’, (2.20)’ and Pedlosky’s, (2.12), semicircles can take place. Let us analyse the 
possible cases. It is easy to see that for the baroclinic instability (we omit the in2 in 
(2.19)) or for p large enough, Miles’ semicircle lies within that of Pedlosky. When p 
equals zero both semicircles degenerate into Howard’s semicircle. Intersection of the 
contours occurs at small /3. The boundary value pMp separates these cases. It 
corresponds to the two semicircles touching each other at the point (cl, 0) and can be 
found from the fourth-order equation 

[RL +RE /?/(k2 + in2)]; - R, = +up-- ($Up)’( Urnax - Urnin + ;g)-’, R, = t( Urnax - Urnin). 

R, = $(c2 -cl)  = ;[urn,,- Urnin +;q- (gup)“urn,, - Urnin +;u,,-11. 
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It is easy to see that pMp increases monotonically as k decreases, from zero at k-tco 
to  the limiting value &, at k = 0. This limit is given by the simple explicit 
expression 

(2.22) 

Thus for p > pOMp all the semicircles (2.20) (i.e. for all k) lie within those of Pedlosky 
(2.12), while for p < p”,, an intersection of the contours (2.12), (2.20) necessarily 
takes place for some k, and the mutual region is the domain in question. 

pOMp = 21c2R, = x ~ ( U ~ ~ ~ - U ~ ~ ~ ) .  

2.4. The work of Hall (1980) 
To complete the picture of interrelations between the previously existing semicircle 
theorems, let us also mention the semicircle theorem proved by Hall (1980) for the 
barotropic instability problem of rectilinear barotropic flow upon a meridionally 
non-uniform bottom. This theorem can be easily extended to our problem, as was 
done with Miles’ theorem. Within the context of our problem, Hall’s semicircle 
theorem states that  the domain of allowed c confined by his one-parametric family 
of semicircles is equivalent to the intersection of Pedlosky’s (1964) semicircle and 
Miles’ (1964) semicircle of theorem I1 (not theorem 111). As theorem 11 yields the 
semicircle corresponding to  the largest possible one of the family (2.20) (i.e. with 
radius equal to 2R, and with the same centre position) i t  is always weaker than 
theorem 111, which we have extended here, and thus Hall’s theorem imposes no 
additional constraints, compared to those of the previous subsection. 

2.5. Discussion 
Our goal is to get sharper constraints on c than the set (2.9), (2.12), (2.15), (2.20) and 
to establish relations between different types of constraints. The most evident weak 
point of Miles’ and Pedlosky’s evaluations (2.12), (2.20) seems to  be the fact that  both 
domains expand when /3 increases. This feature contradicts the generally accepted 
understanding of the underlying physics of instability (for a brief discussion of this 
issue, see 56.2); one of our particular aims is to construct evaluations free of this 
defect. We also note that in our study some additional flow characteristics will be 
involved in the analysis. 

3. ‘Quasi-parabola’ bound and its implications 
In  this section we shall derive new bounds on the phase speed of unstable modes 

c by establishing new relations between the integrals (P) and (j) of (2.5), (2.6). 
Firstly, we formulate these relations in the form of the following lemma. 

3.1. The evaluation of ( P )  in terms of 0’) from above 
LEMMA. For unstable modes the following inequality holds : 

where 
G = g4+l(q-4k2c$}; 1 = IUJmaX+IS-~~Jmax. ( 3 4  

xu = N,(U-c)~-&VUJU-c)-~, (3-3) 

Proof. Let us differentiate the function x, which is defined by the relation (2.13), 
with respect to y :  
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then the following inequality can be written : 

IXYl2 2 IU-cl INyI"+(Uy)212V12(U-cl-l- lUyl 12vl Wyl. 

IXz12 2 lU-cl Wz12+~(~y)212V121U-~I-1-lluyl Dl WYl. 

(3.4) 
Similarly, differentiation with respect to z yields 

(3.5) 
Substituting (3.4), (3.5) into (2.14) we obtain 

B e )  +Biz) 2 B!u) +B& + E;y) + E& + k2 D2 

-(PNyI I4 lNyl)-(PsS-ll&l 14 I W Z I ) ,  (3.6) 

where 

o2 = (PsIU-Cl 14". 
Let us evaluate the two last integrals in (3.6), utilizing the Caushy-Bunya- 
kovsky-Shwarts inequality twice : 

Similarly we get 

Let us strengthen the inequality (3.6) using (3.9), (3.8) 

(Ps 8-l) u,l wl IN22 I ) G % ( Z )  q z ) .  (3-9) 

Q.E.D. 
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We note that positivity of the expressions under the square roots in (3.2) or (3.13), 
(3.14) is provided by the inequality (2.15). 

3.2. Derivation of ‘ quasi-parabola ’ and ‘composite quasi-parabola ’ bounds on c 

Let us reconsider the derivation of the evaluation (2.9). We recall that the upper 
bound on (2.9) was found by neglecting the definitely negative term proportional to 
p in (2.8) (the ratio G ) / ( P )  is obviously positive). The lemma proved above allows 
us to get straightforwardly a lower bound for this ratio and thus to obtain a more 
precise upper bound for the complex phase speed c. From (2.8), (3.1) it follows that 

c, < urnax-&. 
2 6  

(3.15) 

The curve that bounds the region defined by (3.15) starts at the point (Urn,, 0) and 
behaves as a quadratic parabola at small ci, then ci continues to increase 
monotonically up to the value C,(C, = qi/2k)  with decreasing c,. This maximum 
value of ordinate ci is attained at  a finite value of c,, which we denote as c,, = U,,, = 
UmaX-P/4k2. For c, < c,, the ordinate ci preserves the same value C, (see figure 2). 
We shall hereinafter refer to the curve segment between the points ( Urnax, 0) and 
(U,,, -iU,kp2, C,) as a quasi-parabola. We note that apart from being explicitly 
dependent on ,8 and wavenumber k, this quasi-parabola segment depends on two 
different combinations of the extremal flow gradients q and I ,  while the abscissa of 
the conjunction point depends exclusively on 3, and the ordinate of the half-line 
depends only on q and k, similarly to Pedlosky’s growth-rate bound (2.15). It should 
be also pointed out, that the half-line of (3.15) is always somewhat above this bound. 
(It should be noted, however, that  for an important particular class of problems, 
namely, for the problem of purely baroclinic instability, the growth-rate bound of the 
type (2.15) exactly coincides with the half-line of (3.15). Hence, for the baroclinic 
case the boundary curve (3.15) coincides with or lies below the baroclinic analogue 
of (2.15).) Thus, for the case considered here, the quasi-parabola segment of (3.15) 
always intersects Pedlosky’s straight line a t  a certain point (crp ,  Cp). This fact allows 
us to construct a new bound by virtue of a combination of (3.15) and (2.15) as follows: 

(3.16) 

where CrP = urn,,-p/(4k2+7L2)[1 +nm(4k2+n*)-q; m = lq-i. 

For convenience we shall further refer to  (3.15) and (3.16) as the ‘quasi-parabola’ 
bound and the ‘ composite quasi-parabola ’ bound, respectively. How meaningful 
these bounds are (in comparison with all other known bounds) and their implications 
will be considered below. 

3.3. The implications of the bounds (3.15) and (3.16) 
A bound should be considered meaningful when it diminishes the domain on the c- 
plane allowed by other bounds. It is also of special interest to get an a priori 
evaluation in terms of the maximum growth rate. Here we shall show that (3.15), 
(3.16) effectively cut off the instability domain prescribed by (2.15), (2.20) for a wide 
range of parameters. (Obviously the bound (3.15) always improves Pedlosky’s result 
(2.12) and therefore is not discussed in this context here.) Combination of (3.15), 



Barotropic-Baroclinic instability parameters of zonal jlows 169 

(3.16) with Miles’ semicircle theorem (2.20) will allow us to improve the growth-rate 
evaluation as well. 

3.3.1. A growth-rate evaluation 
It is easy to see that a combination of the quasi-parabola bounds (3.15), (3.16) and 

Miles’ semicircle theorem allows us to find the intersection point of the boundary 
lines of (2.16), (3.15) and thus to obtain a growth-rate-type evaluation. This bound 
will clearly be more precise than (2.15)’ (2.16) (in growth-rate terms), when the 
abscissa of the intersection point exceeds crp.  Then c;, the ordinate in question, of the 
intersection point of the bound lines of (2.16), (3.15) can be found straightforwardly 
from the equation 

2GR, G2 
(C?)2 - - +;?,=o, (3.17) 

which is easily presented as a quadratic equation in terms of the new variable 
(q-4k2c3i.  However, we shall not write down this bulky solution here; instead, we 
believe it more useful to give a qualitative analysis and to ascertain the relative 
positions of the quasi-parabola (3.15) and Miles’ semicircle (2.20). 

There are three qualitatively different relative positions of the curves in question, 
schematically depicted in figure 2. 

The quasi-parabola touches Miles’ semicircle from inside a t  the point (Urnax, 0) (see 
figure 2) when /3 is large enough, as prescribed by the inequality 

B >, = Go&’ ; Go = G(ci)lci=0. ( 3 . 1 8 ~ )  

Again, we would rather present a simple evaluation of the threshold value PI, than 
a bulky solution of ( 3 . 1 8 ~ ) .  As R, varies from Howard’s value R, to 2R, the 
threshold value /?,(k, Urn,, Urnin, q,  1) can be easily evaluated as follows: 

Go < p1 d 2Go (3.18b) 

For a certain range of B E  (p2 ; a,), the quasi-parabola touches the semicircle from 
outside at the point (Urn,,, 0) and then crosses it a t  larger values of ci (see figure 2b). 
The second threshold value /3,(k, Urn,,, Urnin, q,  1)  can be found from the equation 

urnax - Urnin urnax - Urnin * 

(/?2)2-/324RMk2+4Rk12k4/q-(q2-Z2) k2  = 0.  (3.19) 

We note that when k is large enough, p2 tends to zero. 
For values of p smaller than p2, the quasi-parabola goes above the semicircle and 

cannot be used for improvement of (2.20). 
From the point of view of these bounds, refinement of another pair of threshold 

values of p (we refer to them as BPI, ppE) is important. They correspond to the 
situations of the quasi-parabola and the semicircle crossing, a t  abscissae equal to C,, 
(see figure 2d, e). The values /?,,, ppl can be derived from (3.17) by substituting C ,  
instead of ci and then treating this equation as an equation for p:  

paCt-2GRMj3+G2 = 0. (3.20) 

The smaller root Pp, gives the threshold of where the quasi-parabola bounds (3.15), 
(3.16) become meaningful in the range of /3 (BPI, /3,,). The bounds (3.15), (3.16) cut 
off a certain part of the domain allowed by (2.15), (2.16), but give no refinement of 
the growth-rate bound. For the range of /3 exceeding the second threshold pp,, the 
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FIQURE 2. For caption see facing page. 
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quasi-parabola bounds allow us to get a more precise growth-rate bound as well. We 
note that the different threshold values of P are related as follows: 

P P ,  ’ B1 ’ P P ,  ’ P 2 ‘  

3.3.2. Simpli$ed versions of the growth-rate bound 
For many purposes, it is convenient to have a less precise but more simple explicit 

presentation of the growth-rate bound, than an exact solution to (3.17). 
The most simple and therefore useful forms of the approximate solutions to (3.17) 

for the growth rate can be found through simple geometrical considerations. First, 
an upper bound for growth rate r can be obtained by calculating ci at the intersection 
point (we shall refer to it as Cil), of (3.15) and the vertical straight line touching Miles’ 
semicircle from the side of smaller c, values (figure 2). One obtains immediately from 
(3.15), (2.16) (see figure 2e) 

(CiI)’ G 4GR,/P, ( 3 . 2 1 ~ )  
or in terms of the growth rate 

where 

(3.21b) 

It should be stressed that the growth-rate bound given by ( 3 . 2 1 ~ )  depends on k and 
P only in combination : 9 = P / k 2 .  Let us normalize r (P = 4 r 2 / q )  and write down the 
explicit solution of the quadratic equation (3.21 b )  : 

P = $(9(2-mX)+([9(2-7&)]2+ (m-l)$}, (3.22a) 

where x=4x.  
We point out a remarkable feature of (3.22) : the upper bound for the growth rate 

r behaves oppositely to all known bounds, r decreases with P increasing (at least 
when P is large enough) and k fixed. It should be specially stressed that r decreases 
down to zero as /3 tends to infinity. We have for large /3 

P = 2( 1 + mi) (Urnax - Umin) Ujl  (3.22b) 

We note that for an important particular class of flows (namely, for purely 

P =13(2-8); $< 1 (3.224 

Let us consider another possible way to construct a comparatively simple upper 
bound for the growth rate. We approximate the quasi-parabola bound (3.15) by a 
quadratic parabola (mentioned above as the small-ci expansion). This parabolic 
approximation can also be of interest in itself: 

Obviously, the same asymptotics (3.226) hold also for small k. 

barotropic or baroclinic ones), expression ( 3 . 2 2 ~ )  takes an especially simple form : 

c12 < 2Go(umax-cr)/P* (3.23) 

An evaluation of (cJmax, based on the calculation of the ordinate (Ci,) of the 

FIGURE 2. The sketches (u-e) illustrate the positions of the ‘quasi-parabola’ bounds with respect 
to Miles’ semicircle: -, the quasi-parabola bound (3.15) and the semicircle (2.20); -, the 
‘composite quasi-parabola’ bound (3.16); ----, Pedlosky’s growth-rate bound (2.15); -.-.-.- 
parabolic approximation (3.23). (a) P, < P ;  (a) P2 < P < PI; (c) p < /Iz; (d )  p = Pp,; ( e )  p = pP2; (f) 
An illustration to the parabolic approximation (3.23) and the evaluations (3.21a), (3.24). 
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= c, c, c- C2 c+ 

FIGURE 3. The relative positions of constants c,, c-, cl, cz on the c,-axis. 

intersection point of the quadratic parabola and Miles’ semicircle, appears to 
improve (3 .22~)  only in the large-B range. Therefore we present here the expression 
for (ci)max valid only in this range. 

(3.24) 

Similarly to (3.22a), the bound (3.24) increases down to zero with P increasing to 
infinity. But contrary to (3.22a), it exhibits no self-similar dependence on /3 and k. 

4. Modifications of Miles’ theorem 
4.1. Miles’ formulation 

In this section we shall modify Miles’ (1964) theorem, extended for our case in $2.3, 
exploiting his main idea and our results of the previous section, as well as the results 
of Pedlosky (1964), reviewed in $2.2. 

We recall that Miles (1964) proved the phase speed c of the unstable disturbances 
to lie within a certain semicircle prescribed as follows: 

(4.1) 

~ 1 6  umin; C- G umin; c2 2 Umax; C+ 2 urnax, (4-2) 

[c,-&, +cJ2 + ci” < [3c, -c,)12. 

This statement holds for arbitrary c,, c2 satisfying conditions 

where c+, c- are specified in (2.17). 
Miles’ particular choice of c,, c2 (2.19), provides the minimum radius R M  of the 

semicircle (given by (2.22)), but, in view of combination of this constraint with the 
results of $3, it appears that another choice of these constants can lead to sharper 
constraints on c. 

4.2. Improvement of Miles’ bound: c1 is  varied, c2 is  $xed 
We recall that while deriving (4.1), the term 

G(U-c,)(U-c-)) 

(which appears on the right-hand side of (2.16) presented in the form (2.17)) has been 
neglected as definitely non-positive (under the condition of the proper choice of c+, 
c- as functions of cl, c2 ; the positions of c+, c-, cl, c2 are sketched in figure 3.).  Invoking 
the lemma (3.1), it is easy to get two similar inequalities corresponding to two 
different ranges of the parameter c,, while c2 is considered to be fixed and equal to 
Urn=. For c1 defined as an arbitrary real parameter from the interval [Urnin-%; 
Urnin-%+ ($$)‘(Urnax- Umin+&)-’] and c+ - given by (2.18), the inequality takes the 
form 

[ c , - ~ ( c , + ~ , , ~ ~ ) ] ~ + [ i  i-c(c+- u ~ ~ ~ ) ( u ~ ~ ~ - ~ - )  c; 6 [~(~,,,-c~)12. (4.3a) 1 k2 
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FIQURE 4. An illustration to the inequalities (4.3). A sketch of the semioval-like figures prescribed 
by (4.3) in comparison to the semiellipses and the semicircles (4.1) taken at  a certain value of c1 
smaller than Miles’ value. 

Keeping the same value for c2 and expressions for c+, c- we get the second 
inequality for c, E ( - co : Umin - q] : 

[c,-i(c1+ Umax)I2+ 1+-(c+-Umax)(umax-c-) C; < [i(um,-c1)]2. (4.3b) [ :  1 
We note that ( 4 . 3 ~ )  and (4.3b) coincide at the mutual point, i.e. when c1 = Urnin- 
T I  

9. 
Thorough analysis of the one-parametric families of the domains prescribed by 

(4.3a, b)  goes beyond the scope of this paper. 
We shall present a qualitative picture and study the limiting cases in more detail. 

First we note that the inequalities (4.3a, b) can be enforced and a t  the same time 
considerably simplified by substituting Go for G. Then we get a one-parametric 
family of semiellipses, which on the one hand allows a straightforward detailed 
analysis, and on the other hand gives an idea of the way the boundary curves of the 
unsimplified inequalities (4.3~4 b )  behave. Thus, we can conclude that (4.3a, b)  
prescribe a one-parametric family of semioval-like domains, which lie within the 
corresponding semiellipses, which in turn lie within the semicircles (4.1) (see figure 4). 

Let us consider in more detail the limiting cases: 
( A )  c1+-w, 
(@ c1+ uLin-@+ (&J2(Umax-Qin +it 1) 1u -1 . 

Cme A. When cl+- 00 it follows from (4.3b) that 

k2 
(Umax-Cr)IClI 2 c ? ~ & l c l l  

and finally we get 

Thus, in this case we have obtained the inequality (3.15) derived earlier. Within this 
context, it  should be interpreted as exhibiting the tendency of our semioval-like 
figures to elongate along the real axis as the parameter c ,  decreases. When c1 tends 
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to minus infinity, the width of the figures also tends to infinity and we get our quasi- 
parabola bound. 

Case B. When c1 lies near Miles’ value 

Umin - ;q + ( ; q ) z (  urn,, - Umin + aq)-l 
(we denote the difference as a) the following inequality can be obtained 

The value of a should be chosen to minimize ( c ~ ) ~ ~ .  The bound (4.4) is meaningful 
when the minimal value of the terms in the braces in (4.4) appears to be smaller than 
unity. We note that the inequality remains valid after substitution of Go for G ,  and 
then the modified ratio in braces should be minimized. 

4.3. c2 is varied, c- is fixed 
In the inequalities (4.3a, b) ,  we have fixed c2 and put it equal to Urnax, varied c1 and 
used the inequality (3.1). Here we shall make use of the inequality (2.7). We shall fix 
the value of c-, and put it equal to Urnin, while c2 will be varied from Urn,, to infinity. 
Then, similarly to (4.3), we obtain two inequalities: 

(4.54 

(4.5b) 

(4.5c) where 

The inequalities (4.5a, b)  prescribe the one-parametric families of the semicircle 
domains. The semicircles (4.5) differ from Miles’ one (2.19) both by the centre position 
on the real axis and the radius value. The mutual domain of all these semicircles is 
the domain in question, which gives the new constraints on c that we are seeking. 

Let us start with the analysis of the inequalities ( 4 . 5 ~ ) .  Firstly, we note that the 
condition c1 +c, < Urn+ U,,, restricts from above a range of permitted y : 

y < 1-U;  u = RH/VZM ( 4 . 6 ~ )  

i c1+ c2 G urn,, + Umin 9 

[cr -%(el + d12 + C? E(c2 -c1 )I2 - ( ~ 2  - kax)( u m x  Y > 

e l +  cz 2 umax + Urnin 7 

[Cr -t(c1 +c2)12 + C? [ 2 ( ~ 2  -c1)IZ - (c, - Umin)(Urnin -c1) 7, 

y = ( l + $ ) l .  , c1 = urn,n-~v,+(~q)~(cz-u,in+~q)-l. 

and therefore a range of k from below 

(4.6b) 

We also note that all the semicircumferences ( 4 . 5 ~ )  intersect a t  the same point with 
the abscissa crt, 

C,( = C1-k  2 g R ~  (4.7) 

This implies that the domain in question D is equivalent to the intersection 
(overlapping) of the two semicircles, one of which is that of Miles (2.20), while the 
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FIGURE 5. An illustration of the inequalities (4.5). The domain (4.10) for a certain fixed 
c2 (cp > Urn,,) with condition (4.6). Miles’ semicircle is shown by a dashed line. 

second one will be specified below. It is convenient to present the results of this 
section using the notation 

S(X, P )  

for a circle with its centre at  position x on the real axis and radius p. There are two 
ranges of k with qualitatively different D geometry : 

(i) k > in (y < t ) ,  
= x(i(umax + ‘1)’ R M )  n s(t(umax + Urnin)’ ~(umax + k i n )  - cl). (4.8) 

It should be pointed out that the centre of the second semicircle is located a t  the 
same point as the Pedlosky one, but with a radius which is always greater than RM 
but smaller than R, for p large enough. The point of intersection lies to the left of the 
centre of Miles’ semicircle. 

(4.9) 
u 

(ii) ;n-<k<;n ( i < y < l - u ) ,  
1-u 

D = f i M u r n a X + c 1 ) , ~ ~ )  n ~ ( ~ 1 + 2 ~ , y , 2 ~ M [ y ( l - y ) l t ) .  (4.10) 

In this range the second semicircle always has a radius value smaller than RM. The 
point of intersection lies within the right-hand side of Miles’ semicircle (see figure 5 ) .  
Taking the latter fact into account we immediately find a new growth-rate bound: 

ci < 2RM[y( -y)]’. (4.1 1 a)  

It should be noted that y can vary from to a. At the right-hand end of the interval 
(4.9) ( k - t i n ,  y+i )  the bound ( 4 . 1 1 ~ )  tends from below to Miles’ value RM and thus 
yields only a slight refinement of (2.20). Let us analyse the other end of the interval: 

u 
k - r , -  2 ; u=R,/2RM. 

1-CT 

The minimum value of the square root in (4.11a) is attained a t  

y = 1--(T = 8 
4 

and appears to be equal to a 4 3 .  
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Thus we have found that for a certain spatial scale specified by (4.9)' the maximum 
growth rate : (i) increases slower with the increase of /? than Miles' radius (2.21) does ; 
(ii) appears to be bounded by a smaller limit value 

ci G d3 R,  = id3 (Urnax- Urnin). (4.11b) 

Let us turn now to the inequalities (4.5b). It is easy to show that though they 
improve Miles' semicircle bound (2.20), they have no advantages over the intersection 
of (2.12)' (2.20) and therefore will not be analysed here. 

Thus the inequalities (4.8), (4.10)' (4.1la) that we have derived here noticeably 
improve Miles' theorem (2.20). It seems that the most interesting result is the simple 
formula (4.1 la) for the growth-rate bound. 

To clarify the nature of these results, which were found without using any new 
'basic' inequalities besides those of Miles (2.16) and Pedlosky (2.7), we recall that 
(4.5a, b) are a barotropic-baroclinic generalization of Miles' theorem. It is easy to see 
that in the purely baroclinic problem, i.e. when the characteristic horizontal scale L 
tends to infinity, then y+O, and we come back to (2.20) with no improvement. 

5. On the relations between the semicircle and the growth-rate-type 
evaluations 

In this section we shall try to establish some relations between the different types 
of bounds of c from the previous sections, and to derive some new ones. 

Let us revise the derivation of Pedlosky's semicircle (2.12). We recall that the last 
term in (2.11) has been evaluated by using the inequality (2.10). Here we represent 
this term in the form of a sum as follows: 

O"u-t(urnax+ urnin)]) = G ( u - a u r n i n ) )  - o'M(1-2~)  urnin+ urnaxI>>' (5.1) 
where a E ( - a0 ; 11 is a certain dimensionless parameter. Making use of the positivity 
of U-aUrnin and the lemma (3.1) we get the inequality 

(5.2) 
ci" Q(U-aUmi,)) (1-a) Umin-(P)* 0 

Substituting (5.1) into (2.11), taking (2.7), (5.2) into account, we obtain 

P 
G D ( ~ r n a x - ~ r n , , ) I ' + ~ { i [ u r n a x +  k2 + p Umin(l-2a)I>* (5.3) 

This inequality yields a one-parametric family of semiellipse-like figures. In spite of 
the fact that the domain confined by these figures can be easily analysed, we are 
interested here only in the analysis of the consequence of (5.3)' which is obtained 
from (5.3) via replacing G by G o :  

P 
[t(Urnax-urnin)Y +- k2 + ZX (+[urnax + Umin(1-2a)I)- (5.4) 

The inequality (5.4) prescribes a domain of allowed eigenvalues c lying within the 
inner boundary of the parametric family of semiellipses (5.4). As the parameter a 
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urn,, urn, 
c* 

FIQURE 6. A sketch illustrating the tendency of the semiellipses (5.4) to elongate along the c, axis 
as the parameter a decreases, while preserving the same intersection points. The semiellipse 1 
(corresponding to a = 1) coincides with the semicircle (2.12). The semiellipse 2 is taken for an 
intermediate value of a(a < I). The straight line 3 is the result of the semiellipse degeneration a8 
a +- CO. Pedlosky’s straight line (2.15) (depicted by the lower daahed line) lies below the & value 
under condition (5.6~).  

decreases, the semiellipses elongate horizontally (along the c, axis) and become more 
oblate in the vertical direction : from the semicircle (2.12) when a = 1, to degeneration 
into a straight line when a-t-co (see figure 6) .  The peculiar feature of these 
semiellipses is that they all share the same intersection point with the ordinate ci = 
C,(C2, = Go/(k2+&2))  under the condition 

(5.5) Rk = R& + BRH/( k2 + $r2) 2 CL. 

Let us consider three cases when the condition (5.5) is definitely satisfied 
( a )  Assume ,8 to be large: 

B 2 f3Go/(umax-umin); (5.6a) 

then (5.5) holds true for arbitrary k. 
(b)  If we confine ourselves to consideration of small-scale disturbances only 

k2 2 4q/(umax-umin)-$na,  (5.6b) 

then (5.5) holds true for arbitrary but non-zero /3. 
(c)  Consider the flows to be smooth: 

Go P 1 2 1  Mumax - Umin)12 ( 5 . 6 ~ )  

then (5.5) is fulfilled for both k and ,8 arbitrary. 
Let us assume (5 .5)  to be fulfilled through one of the sufficient conditions (6.6a-c). 

Thus the domain of instability prescribed by (5.4) appears to be founded by the arcs 
of Pedlosky’s semicircle from the left and right and by the limiting straight line from 
above. It is easy to see that the inequality (5.4) gives no advantage compared to the 
combination of Pedlosky’s bounds, as the bound (2.15) obviously lies below the line 
ci = C,. But the fact that on the one hand, the line c, = Cq crosses the semicircle 
(2.12) according to (5.5), and on the other hand, C ,  is ( 4 G , / q ) ~  times greater than C, 
of the bound (2.15), allows us to relate these independent Pedlosky’s bounds : 

R, 2 MC, [M” = 4Go/p = 2(1 + l / & ) ]  (5.7) 
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This relation between Pedlosky’s two bounds seems to be of some intrinsic interest, 
as it demonstrates the presence of additional constraints imposed by inner 
connections among flow parameters. Let us consider the consequences of the 
established relation in more detail. The inequality (5.7) literally means that 
Pedlosky’s bound (2.15) cuts off a considerable portion of the semicircle (2.12) under 
condition (5.5). According to (5.6a, b) this occurs, for large p, for the whole spectrum 
of disturbances, and, for arbitrary /3, for small-scale disturbances. 

For the case of smooth flows specified by (5 .6~)  we get from (5.7), (5 .6~)  

It can also be easily shown by virtue of the composite quasi-parabola bound (3.16), 
that the upper bound (cJmax for ci is attained at p+O and decreases monotonically 
from (Urnax- Umin)/2M down to zero, as p increases from zero to infinity. 

We mention that for a class of smooth flows satisfying a less restrictive condition 
than (5.6c), namely 

we can easily obtain an upper bound for ci, which also decreases monotonically with 

q G in2(umax-u&)2, (5.9) 

from i( Umax - Urnin) a t  p+ 0 down to  zero as B-foo. 

6. Conclusions and discussion 

The main results of the paper can be summarized as follows: 
(i) New ‘quasi-parabola’ bounds on the complex phase speed c of the unstable 

modes have been found (inequalities (3.15), (3.16), figure 2), which effectively confine 
the domain of allowed c for a wide range of P.t The allowed domain diminishes as /3 
increases and, it should be emphasized, tends to zero as /3 tends to infinity. 

(ii) Miles’ semicircle theorem, proved originally for Charney ’s model, has been 
extended for the general case of barotropic-baroclinic instability (inequality (2.20)) 
and modified (inequalities (4.3a, b), (4.4), (4.5a, b) ,  (4.8), (4.10), (4.11~)). This results 
in a diminishing of the instability region along both the c, (from the lower-value side) 
and ci axes. 

(iii) Some new relations between Pedlosky’s two types of bound have been 
revealed, which makes it possible to impose new restrictions on ci (inequality (5.8)) 
for the case of a sufficiently smooth flow specified by the inequalities (5.6c), (5.9). 

This set of results taken as a whole allows us to remove some weak points of the 
previously known evaluations of the complex phase speed c and provides 
considerably sharper constraints on c .  

6.1. Summary of results 

6.2. Discussion of results 

In addition to the rigorous bounds on c derived in the paper and listed above, the 
same integral relations can also provide some conclusions of a qualitative character, 
which we believe merit mentioning and brief discussion. 

t We note that the lemma (3.1) and the extension of Miles’ theorem (2.20), which, for the sake 
of simplicity, have been proved here for the case of a flat bottom (a,y = O ) ,  also hold for the 
presence of topography. Thus all the consequences of (3.1) and (2.20) can be extended in a 
straightforward manner to that case as well. 
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6.2.1. East-West $ow asymmetry 
First we want to clarify the question of how the east-west flow asymmetry exhibits 

itself in instability parameters. We also want to shed some light on the closely related 
question regarding the role of P, as in some works (see Killworth 1980 for a review 
of this issue and references) one encounters inferences that P destabilizes westward 
flows, a conclusion was based on the direct numerical analysis of the boundary-value 
problem for some particular examples. 

It is obvious from our basic equations (2.5), (2.6), which are valid for both eastward 
and westward flows, that the sign of the flow velocity is only important for the 
instability parameters in the terms containing P explicitly. Eastwardlwestward flow 
asymmetry manifests itself most clearly in the shift of the instability domain on the 
c-plane along the c, axis. It is easy to see directly from (2.5) that the real parts of the 
disturbance phase velocities for westward flow ( c ~ ) ~  are generally greater in modulo 
than their counterparts with the same wavenumber for an eastward flow with the 
same profile, ( c ~ ) ~ .  This asymmetry certainly reveals itself in all our evaluations of 
c, given above. 

It should be pointed out that  all our bounds on ci, as well as those of other authors 
are symmetric, in contrast to the evident asymmetry of the boundary-value problem 
and to the results of numerical experiments cited by Killworth (1980). To understand 
this less trivial question, let us present the exact explicit expression for ci, which can 
be obtained by inserting c, from (2.8) into (2.6): 

One can immediately conclude that ,8 stabilizes the jlow independently of flow 
direction for large enough p. When p is small the situation requires a more detailed 
analysis. Let us consider the two last terms in (6.1), which are linear in /3 and thus 
are the principal &containing terms in this range. Let us define two ‘effective 
velocities’ &ff(l) and Ueif(2) as follows : 

Then the terms of interest take the form 

which demonstrates that contributions due to P in ci are in a rather subtle balance 
in the small-p range. Thus the influence of small p can stabilize or destabilize both 
westward and eastward flow depending on the flow profile. 

Let us try to evaluate from above the total contribution of the terms in the braces 
in (6.3). For eastward flow, i.e. U > 0, evaluating the first term from above and the 
second one from below, we obtain 

Similarly, for westward flow (U < 0) 
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L (km) U (m s-l) S B 81 

Strong oceanic currents (0.5-1) x 10' 1 4- 1 lo-' 1 
Synoptic-scale oceanic currents (eddies) 10' 10-1 1 0.2 2 
Atmospheric flows 5 x 103 20 4x10-' 102 101 

Open ocean lo3 (1-5)x lo-' 2 x  10-340 10' 

TABLE 1 .  Orders of magnitude of the basic parameters in typical situations. The following values 
of the 'hidden ' fixed dimensional parameters (subscripts o and a refer to the oceanic or atmospheric 
flows, respectively) were taken. Buoyancy frequency n: n, = Vertical scale D: 
D, = 10 km, Do = 5 km; to = 

no = 2 x 
s-l. Dimensional B :  /3, = 10-l' m-l s-'. 

This analysis has been given in detail to demonstrate that the symmetry in our 
bounds on ci appears owing to the crudeness of the existing estimations of qff(a), and 
thus to identify the key point for further analyses within the same paradigm. 

6.2.2. Relevance to real geophysical ftows 
Discussion of the role of our results in the prediction of real geophysical 

phenomena lies far beyond the scope of this paper. It should be stressed that we have 
confined ourselves to investigation of a priori bounds on eigenvalues to a rather 
idealized linear inviscid model, which, nevertheless, forms the basis for the majority 
of studies of geophysical flow dynamics. We note that, even within the linear theory 
framework, viscosity can qualitatively affect the instability parameters. The method 
based on integral inequalities can be applied to the viscid problem as well, and this 
is the subject of another paper (Gnevpshev & Shrira 1990). Nonlinearity is the factor 
of the greatest uncertainty. On the one hand we now have enough examples of when 
the linear theory is misleading from the very beginning (e.g. Romanova 1987), but 
on the other hand, there are many numerical experiments claiming the validity of the 
linear theory (see references, e.g. in Pedlosky 1979; Killworth 1980) for some 
particular examples. We shall not touch upon this question here and only mention 
that a comparison of our results with the data from numerical or in situ experiments 
can be useful, and the discrepancy between results can be informative, in particular 
to identify the manifestations of nonlinear mechanisms. 

To facilitate the comparison of our evaluations with experimental data, it is 
convenient to locate the range relevant to different typical geophysical situations of 
the non-dimensional parameters p and 8, which control the shape of the allowed 
domain of c. We recall that p and S were dimensionalized in 82.1 using typical scales 
of horizontal (L )  and vertical ( H )  flow variability, and characteristic flow velocity 
(U) .  In  terms of non-dimensional variables we distinguish two characteristic values 
of /?, namely and BMp, where P1 is the threshold value defined by ( 3 . 1 8 ~ )  for the 
quasi-parabola bound (3.15) 

and&, is the threshold value defined by (2.22) 

PI N Gol(umax-umin),  

To relate dimensional and non-dimensional parameters relevant to different types of 
geophysical flows we present table 1, which gives an idea of the orders of magnitude 
of some basic dimensional (U,  L) and non-dimensional ( p ,  8, p , )  parameters. It is easy 
to see from the table that ranges of both small (< 1) and large (+ 1 )  values of non- 
dimensional are relevant to geophysical flows. 
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When /3 is small (strong and narrow jets) all the evaluations an upper bound of the 
order of unity give for non-dimensional ci (except the bound (2.15) for small Ic). Both 
Miles’ and Pedlosky’s semicircles lie close to that of Howard. 

In spite of the fact that our results at p < 1 allow one to improve noticeably the 
known bounds, it seems not to be of special interest to dwell upon these improvements 
here, as in this range these new bounds are still far from being good in view of direct 
geophysical applications. 

The situation is different for /3 $ 1. We recall that in this range the different types 
of crude estimations of ( c ~ ) ~ ~ ~  give roughly the following : Pedlosky’s semicircle yields 
O(/$), Miles’ one gives 0(1), while the implications (3.22a)’ (3.24) of the quasi- 
parabola bound (3.15) provides O ( p i )  or even smaller values. This means that for 
typical atmospheric flows and open ocean currents our results yield at least a one- 
order gain in accuracy. 
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